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Discussion of "Generalized beam theory applied to shear stiffness".
Int. J. Solids Structures. Vol. 27. No. 15. pp. 1955-1967 (1991)

Dr Renton develops his expressions for the shear contribution to beam deflections by an
energy argument based on the reasonable premise that the reactions at a fixed support
should do no work. This approach would certainly seem to be preferable to the largely ad
hoc methods used by earlier authors. However. an alternative interpretation is to regard
the theory of beams as the beginning of an asymptotic expansion of the solution of a fully
three-dimensional elasticity problem in terms of a small parameter. c. defined as the ratio
between a representative dimension in the beam cross-section and the beam length. In this
context. the bending deflection term-about which there is no disagreement-would be the
first term of the expansion and the shear deflection might be defined as the second term.
which is generally two orders higher in /:.

For the thin rectangular cantilever. 0 < x < a. -h < y < h. built-in at x = a. the
,lppropriate three-dimensional problem is defined by the boundary conditions

11,=11,.=0• .\:=a. -h<y<h: u,,=O. x=O. -h<y<h:

( 1-3)

where the displacement boundary conditions at the built-in end are imposed in the "strong"
or pointwise sense.

The usual polynomial elasticity solution of this problem involves a distortion of initially
plane sections due to shear and hence can only satisfy these conditions in a weak sense
either in terms of the displacement and/or displacement gradient at one or more discrete
points or in terms of an average displacement.

To the best of the present author's knowledge. the exact problem-which will involve
a self-equilibrated "Saint-Venant" corrective stress field near the built-in end-has never
been solved. However. some properties of this corrective field can be determined without
completing a full solution. For example. by applying Betti's reciprocal theorem to the
approximate solution. using a state of simple bending as auxiliary solution. it can be shown
that. if the distorted end section is restored to a plane by a self-equilibrated distribution of
normal stress. a..... the location of the resulting plane corresponds to the 'integral' boundary
condition

fh 1I,(a. y»)' dy = O. (4)

Unfortunately. the boundary condition on the component lIy cannot be dealt with as
simply. but it is interesting to note that the use of eqn (4) in the approximate solution,
coupled with the related integral conditions

fh 1I,(a. y) dy = O.
-b fh lIy(a. y) dy = 0

-b
(5.6)
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gives very nearly the same result as Renton's energy argument. Since Renton's argument
is derived from considerations of strain energy in the approximate solution itself. we should
not be surprised to find that his result is recovered euctly if (6) is replaced by the end
condition

(7)

[t is important to remark thaL though the corrective stress field at the built-in end is
localized in the S3int-Ven3nt sense, the corresponding corrective displacement fIeld is not
necessarily localized, since the rigid body motion of the region beyond the end zone will
generally be 3tfected by the precise end conditions applied. Furthermore. it seems reasonable
to expect that the extra constraint (e.g. on the strain component e,,) implied by the strong
end conditions (I) 3bove would result in a stiffer restraint than that predicted by the
elementary beam theory. Somewhat similar ctfects an: obtained when a cantilever is sub
jected to torsion and the end-plane is restrained from warping. in which case the rotation
of thc fn:e end can bc signifIcantly rcduced (Timoshenko and Goodicr. (970).

It is pcrhaps instructive to considcr the simpler problem in whidl the rectangular
cantilevcr bcam is loaded only by a bcnding momcnt at the free end i.e. in which the
c~mditions (2 . ."\) at .r = 0 arc rcplaccd by

j
.!

17" = 0, 17" Y dr = Jf.
h

(X)

[n this casc, thc clcmcntary solution predicts no distortion of planc scctions and thcrc
is no shcar flln:c, but Poisson's ratio cfl'ccts ensure that thcrc is a non-/cro valuc of ('",
which tllust bc constraincd by a local corrcctivc ficld at thc built-in cnd. This local ficld will
itsclf account for some strain cncrgy and, as a result. the rotation of the applied moment,
M, will bc Icss than that predicted by the c1ementary theory. Furthermore. this reduction
in rotation must be concentrated in the end zone, so that its etlcct on the beam displacement
is secn principally as a rigid body rotation, which in turn will cause thc end deflection to
be less than that predicted by thc elementary theory by an amount which is proportional
to thc lcngth of thc beam. This tcrm is of the same ordcr in thc supposcd asymptotic
expansion as thc shcar dctlcction tcrm, notwithstanding thc fact that in thc present problem
there is no shcar force to producc such a ddlection.

Thc purpose of this perhaps rather laboured discussion is to show that "Saint-Venant"
type end dfects in beam problems produce corrections to the beam deflections that an: of
the same order in an asymptotic expansion of the exact three-dimensional solution as those
due to legitimate shear deflection ctfects, even though the latter are generally significantly
larger. as demonstrated by the relatively minor differences between pn:viously published
estimates listed in Renton's Introduction. Thus, the attempt to place shear ddkctions on
a lcgitimate footing by asymptotic expansion seems doomed to failure.

She;tr deflection estimates also introduce other paradoxical eflccts into the beam theory
which deserve further discussion. For example. we might dcfine a concentrated moment,
A/. applied at the point .r on a beam as the limit as e)x --+ 0 of a pair of e4ual and opposite
concentrated transverse forces of magnitude AIle)x at the points x and x + e)x respectively.
However, the infinitesimal region of beam between x and x + eix will experience a shear
deflection which tends to a constant rather than zero as Jx --+ 0, suggesting that a con
centrated moment should he associated with a step in transverse deflection. On the other
hand. no such deflection would be expected if the concentrated moment were regarded as
due to two equal and opposite horizontal forces acting (say) at the top and bottom of the
beam. This suggests that a consistent second-order beam theory would need to encompass
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higher order infonnation about the method of load application (and hence about the local
stress state in the beam), beyond a mere statement of force resultants.
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